All the inspiration you have to get fit as a fiddle—and remain there. 50 Fitness Girls on Instagram To Follow From ballet performers to weightlifters and big name coaches, these sharp ladies flaunt the best exercise inspiration on Instagram. Track with the expectation of complimentary exercise thoughts, wonderful photography, and inspiration to get dynamic both inside and outside the rec center. Here, our 50 most loved fit young ladies on Instagram. | 1 | Sonia Silva View this post on Instagram Press PLAY ▶️ Treinar não é de todo a prioridade neste momento mas ficar em casa não significa ficar parado e a manutenção da saúde mental é imperativa para que todos nós saibamos cumprir a nossa missão #staythefuckhome. Quanto mais cedo nos isolarmos mais cedo nos abraçaremos. Permaneçam fortes para que consigamos quebrar as cadeias e contrariar todas as estatísticas pela positiva. #covid19 Powered by @helena.santos10, a minha companhia de isolamento. #fitme #fitmept #fitmeever...
Shreiner, A. B., Kao, J. Y. & younger, V. B. The gut microbiome in health and in ailment. Curr. Opin. Gastroenterol. 31, sixty nine–seventy five (2015).
Turnbaugh, P. J. et al. An obesity-linked gut microbiome with expanded skill for power harvest. Nature 444, 1027–1031 (2006).
Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T. & Gordon, J. I. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science 352, 1533 (2016).
Mazmanian, S. okay., circular, J. L. & Kasper, D. L. A microbial symbiosis aspect prevents intestinal inflammatory ailment. Nature 453, 620–625 (2008).
Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma sufferers. Science 359, 104–108 (2018).
Gopalakrishnan, V. et al. gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, ninety seven–103 (2018).
Pedrolli, D. B. et al. Engineering microbial residing therapeutics: the artificial biology toolbox. traits Biotechnol. 37, a hundred–115 (2019).
Riglar, D. T. et al. Engineered bacteria can function in the mammalian intestine lengthy-term as reside diagnostics of irritation. Nat. Biotechnol. 35, 653–658 (2017).
Stritzker, J. et al. Tumor-specific colonization, tissue distribution, and gene induction with the aid of probiotic Escherichia coli Nissle 1917 in live mice. Int. J. Med. Microbiol. IJMM 297, 151–162 (2007).
U.S. branch of health and Human functions, meals and Drug Administration assistance for trade. Early clinical trials with reside biotherapeutic items: Chemistry, manufacturing, and control assistance. www.fda.gov/downloads/Biologip.cE2%80percentA6/UCM292704.pdf (2016).
Deal, C. Science and rules of live Microbiome-primarily based products Used to evade, treat, or treatment diseases in humans - 09/17/2018 - 09/17/2018. (U.S. meals and Drug Administration, 2019). http://www.fda.gov/vaccines-blood-biologics/workshops-conferences-conferences-biologics/science-and-regulation-reside-microbiome-primarily based-items-used-evade-deal with-or-cure-illnesses-people.
Ross, J. J. et al. considerations in the development of are living biotherapeutic items for scientific use. Curr. issues Mol. Biol. 10, 13–16 (2008).
the european Pharmacopoeia fee. live biotherapeutic items for human use 9.7 (2019).
Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and suggests dose-based exposure in match people. Sci. Transl. Med. eleven, eaau7975 (2019).
Chowdhury, S. et al. Programmable bacteria induce long lasting tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019).
Braat, H. et al. A section I trial with transgenic micro organism expressing interleukin-10 in Crohn's sickness. Clin. Gastroenterol. Hepatol. four, 754–759 (2006).
Kurtz, C. et al. Translational building of microbiome-based therapeutics: kinetics of E. coli nissle and engineered strains in humans and nonhuman primates. Clin. Transl. Sci. eleven, 200–207 (2018).
Sonnenborn, U. Escherichia coli strain Nissle 1917-from bench to bedside and again: heritage of a unique Escherichia coli stress with probiotic homes. FEMS Microbiol. Lett. 363, fnw212 (2016).
Schultz, M. scientific use of E. coli Nissle 1917 in inflammatory bowel ailment. Inflamm. Bowel Dis. 14, 1012–1018 (2008).
Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. subsequent-generation biocontainment methods for engineered organisms. Nat. Chem. Biol. 14, 530–537 (2018).
Beimfohr, C. A assessment of research carried out with probiotic E. coli marketed as symbioflor. Int. J. Bacteriol. 2016, 3535621 (2016).
Patzer, S. I., Baquero, M. R., Bravo, D., Moreno, F. & Hantke, okay. The colicin G, H and X determinants encode microcins M and H47, which might make the most of the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149, 2557–2570 (2003).
Deriu, E. et al. Probiotic micro organism cut back Salmonella Typhimurium intestinal colonization by way of competing for iron. cell Host Microbe 14, 26–37 (2013).
Fábrega, M. J. et al. Intestinal anti-inflammatory results of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. front. Microbiol. eight, 1274 (2017).
Guo, S. et al. Escherichia coli Nissle 1917 protects intestinal barrier function by inhibiting NF-κB-mediated activation of the MLCK-P-MLC signaling pathway. Mediators Inflamm. 2019, 5796491 (2019).
Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. dietary foundation for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 in opposition t E. coli O157:H7 in the mouse gut. PLoS ONE eight, e53957 (2013).
Khosla, C. & Bailey, J. E. Characterization of the oxygen-based promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J. Bacteriol. 171, 5995–6004 (1989).
Palmer, J. D. et al. Engineered probiotic for the inhibition of Salmonella by way of tetrathionate-caused production of Microcin H47. ACS Infect. Dis. four, 39–forty five (2018).
Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and stop Pseudomonas aeruginosa intestine an infection in animal fashions. Nat. Commun. 8, 15028 (2017).
Chou, C., Aristidou, A. A., Meng, S., Bennett, G. N. & San, okay. Characterization of a pH-inducible promoter device for high-stage expression of recombinant proteins in Escherichia coli. Biotechnol. Bioeng. 47, 186–192 (1995).
Chan, P. F. et al. Characterization of a Novel Fucose-Regulated Promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-motion reports in Streptococcus pneumoniae. J. Bacteriol. 185, 2051–2058 (2003).
Letek, M. et al. Characterization and use of catabolite-repressed promoters from gluconate genes in corynebacterium glutamicum. J. Bacteriol. 188, 409–423 (2006).
Irani, M. H., Orosz, L. & Adhya, S. A control element within a structural gene: the gal operon of Escherichia coli. phone 32, 783–788 (1983).
Valdez-Cruz, N. A., Caspeta, L., Pérez, N. O., Ramírez, O. T. & Trujillo-Roldán, M. A. creation of recombinant proteins in E. coli by using the warmth inducible expression device in line with the phage lambda pL and/or pR promoters. Microb. mobilephone Factories 9, 18 (2010).
Isabella, V. M. & Clark, V. L. Deep sequencing-primarily based evaluation of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 12, 51 (2011).
Geldart, k. G. et al. Engineered E. coli Nissle 1917 for the discount of vancomycin-resistant Enterococcus in the intestinal tract. Bioeng. Transl. Med. 3, 197–208 (2018).
Chen, Z. et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits weight problems. J. Clin. make investments. 124, 3391–3406 (2014).
Somabhai, C. A., Raghuvanshi, R. & Nareshkumar, G. Genetically engineered Escherichia coli Nissle 1917 synbiotics in the reduction of metabolic effects triggered by means of continual consumption of dietary fructose. PLoS ONE 11, e0164860 (2016).
Guo, T., Xin, Y., Zhang, Y., Gu, X. & Kong, J. A fast and versatile tool for genomic engineering in Lactococcus lactis. Microb. cellphone Factories 18, 22 (2019).
Börner, R. A., Kandasamy, V., Axelsen, A. M., Nielsen, A. T. & Bosma, E. F. Genome modifying of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol. Lett. 366, fny291 (2019).
tune, A. A., In, L. L. A., Lim, S. H. E. & Rahim, R. A. A evaluation on Lactococcus lactis: from food to manufacturing unit. Microb. cell Factories sixteen, fifty five (2017).
Vesa, Pochart & Marteau. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 within the human gastrointestinal tract. Aliment. Pharmacol. Ther. 14, 823–828 (2000).
Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. ok. Programming a human commensal bacterium, bacteroides thetaiotaomicron, to sense and respond to stimuli within the murine gut microbiota. telephone Syst. 1, 62–71 (2015).
Shepherd, E. S., DeLoache, W. C., Pruss, okay. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic area of interest enables pressure engraftment in the gut microbiota. Nature 557, 434–438 (2018).
Sonnenburg, J. L. et al. Glycan foraging in vivo with the aid of an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).
Xu, J. et al. Evolution of symbiotic micro organism in the distal human intestine. PLoS Biol. 5, e156 (2007).
Kearney, S. M., Gibbons, S. M., Erdman, S. E. & Alm, E. J. Orthogonal dietary area of interest allows reversible engraftment of a intestine bacterial commensal. mobilephone Rep. 24, 1842–1851 (2018).
Molly, okay., Vande Woestyne, M. & Verstraete, W. building of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 39, 254–258 (1993).
Welch, J. L. M., Hasegawa, Y., McNulty, N. P., Gordon, J. I. & Borisy, G. G. Spatial company of a mannequin 15-member human intestine microbiota based in gnotobiotic mice. Proc. Natl Acad. Sci. united states 114, E9105–E9114 (2017).
Li, H. et al. The outer mucus layer hosts a definite intestinal microbial niche. Nat. Commun. 6, 8292 (2015).
Grondin, J. M., Tamura, k., Déjean, G., Abbott, D. W. & Brumer, H. Polysaccharide Utilization Loci: Fueling Microbial Communities. J. Bacteriol. https://doi.org/10.1128/JB.00860-16 (2017).
Bircher, L., Geirnaert, A., Hammes, F., Lacroix, C. & Schwab, C. effect of cryopreservation and lyophilization on viability and boom of strict anaerobic human gut microbes. Microb. Biotechnol. 11, 721–733 (2018).
Heckly, R. J. & Quay, J. a quick evaluate of lyophilization hurt and fix in bacterial preparations. Cryobiology 18, 592–597 (1981).
Isabella, V. M. et al. building of an artificial reside bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).
Parker, R. C., Plummer, H. C., Siebenmann, C. O. & Chapman, M. G. effect of histolyticus infection and toxin on transplantable mouse tumors. Proc. Soc. Exp. Biol. Med. sixty six, 461–467 (1947).
Malmgren, R. A. & Flanigan, C. C. Localization of the vegetative sort of Clostridium tetani in mouse tumors following intravenous spore administration. cancer Res. 15, 473–478 (1955).
James, N. D. & Sikora, okay. Immunotherapy of Tumors. in Encyclopedia of Immunology 2nd Edn (ed. Delves, P. J.) 1359–1364 (Elsevier, 1998). https://doi.org/10.1006/rwei.1999.0347.
Fujimori, M., Amano, J. & Taniguchi, S. The genus Bifidobacterium for cancer gene remedy. Curr. Opin. Drug Discov. Devel. 5, 200–203 (2002).
Van Mellaert, L., Barbé, S. & Anné, J. Clostridium spores as anti-tumour brokers. developments Microbiol. 14, 190–196 (2006).
Lee, C., Wu, C. & Shiau, A. Endostatin gene therapy delivered by using Salmonella choleraesuis in murine tumor models. J. Gene Med. 6, 1382–1393 (2004).
Yu, Y. A. et al. Visualization of tumors and metastases in reside animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat. Biotechnol. 22, 313–320 (2004).
Yamada, T. et al. Apoptosis or boom arrest: modulation of tumor suppressor p53's specificity by using bacterial redox protein azurin. Proc. Natl Acad. Sci. us of a a hundred and one, 4770–4775 (2004).
Zhang, Y. et al. Escherichia coli Nissle 1917 targets and restrains mouse B16 Melanoma and 4T1 breast tumors through expression of Azurin protein. Appl. Environ. Microbiol. 78, 7603–7610 (2012).
Li, R. et al. Expressing cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting therapy. Res. Microbiol. one hundred seventy, 74–79 (2019).
Ho, C. L. et al. Engineered commensal microbes for weight loss program-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2, 27–37 (2018).
Nakamura, T. et al. Cloned cytosine deaminase gene expression of bifidobacterium longum and application to enzyme/professional-drug remedy of hypoxic solid tumors. Biosci. Biotechnol. Biochem. sixty six, 2362–2366 (2002).
Yi, C., Huang, Y., Guo, Z. & Wang, S. Antitumor impact of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated via Bifidobacterium infantis on melanoma1. Acta Pharmacol. Sin. 26, 629–634 (2005).
Wei, C. et al. Bifidobacteria expressing tumstatin protein for antitumor therapy in tumor-bearing mice. Technol. melanoma Res. treat. 15, 498–508 (2016).
Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo birth. Nature 536, eighty one–85 (2016).
Anderson, J. C., Voigt, C. A. & Arkin, A. P. Environmental signal integration by means of a modular AND gate. Mol. Syst. Biol. three, 133 (2007).
Swofford, C. A., Van Dessel, N. & Forbes, N. S. Quorum-sensing Salmonella selectively trigger protein expression inside tumors. Proc. Natl Acad. Sci. united states of america 112, 3457–3462 (2015).
Danino, T., Prindle, A., Hasty, J. & Bhatia, S. Measuring growth and gene expression dynamics of tumor-focused s. typhimurium bacteria. J. Vis. Exp. https://doi.org/10.3791/50540. (2013).
Dai, Y., Toley, B. J., Swofford, C. A. & Forbes, N. S. building of an inducible telephone-communique equipment that amplifies Salmonella gene expression in tumor tissue. Biotechnol. Bioeng. a hundred and ten, 1769–1781 (2013).
Lu, Y., Yeh, W. & Ohashi, P. S. LPS/TLR4 sign transduction pathway. Cytokine forty two, one hundred forty five–151 (2008).
Howard, S. C., Jones, D. P. & Pui, C.-H. The tumor lysis syndrome. N. Engl. J. Med. 364, 1844–1854 (2011).
Hughes, R. A. & Ellington, A. D. synthetic DNA synthesis and assembly: inserting the artificial in synthetic biology. cold Spring Harb. Perspect. Biol. 9, a023812 (2017).
Minekus, M. et al. A standardised static in vitro digestion formula appropriate for food—a world consensus. food Funct. 5, 1113–1124 (2014).
Kasendra, M. et al. construction of a primary human small gut-on-a-Chip the usage of biopsy-derived organoids. Sci. Rep. eight, 1–14 (2018).
Jalili-Firoozinezhad, S. et al. a posh human intestine microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).
Hatton, G. B., Yadav, V., Basit, A. W. & merchant, H. A. Animal farm: considerations in animal gastrointestinal physiology and relevance to drug birth in people. J. Pharm. Sci. 104, 2747–2776 (2015).
Festing, M. F. W. & Altman, D. G. guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. forty three, 244–258 (2002).
Milligan, P. A. et al. mannequin-primarily based drug building: a rational strategy to efficaciously speed up drug building. Clin. Pharmacol. Ther. ninety three, 502–514 (2013).
Wishart, D. S. rising applications of metabolomics in drug discovery and precision medication. Nat. Rev. Drug Discov. 15, 473–484 (2016).
Xu, P. et al. Characterization of faucet Ambr 250 disposable bioreactors, as a respectable scale-down model for biologics manner construction. Biotechnol. Prog. 33, 478–489 (2017).
Sandner, V., Pybus, L. P., McCreath, G. & Glassey, J. Scale-down mannequin construction in ambr methods: an industrial standpoint. Biotechnol. J. 14, e1700766 (2019).
Manahan, M. et al. Scale-down mannequin qualification of ambr® 250 high-throughput mini-bioreactor gadget for two commercial-scale mAb methods. Biotechnol. Prog. https://doi.org/10.1002/btpr.2870 (2019).
Zhang, S. et al. Induction of Escherichia coli into a VBNC state through continual-move UVC and subsequent changes in metabolic pastime on the single-telephone level. front. Microbiol. 9, 2243 (2018).
Boulos, L., Prévost, M., Barbeau, B., Coallier, J. & Desjardins, R. live/lifeless® BacLightTM: software of a brand new quick staining formula for direct enumeration of conceivable and total micro organism in ingesting water. J. Microbiol. methods 37, 77–86 (1999).
Shahiwala, A. system processes in enhancement of patient compliance to oral drug remedy. skilled Opin. Drug Deliv. eight, 1521–1529 (2011).
Yus, C. et al. centered unencumber of probiotics from enteric microparticulated formulations. Polymers eleven, 1668 (2019).
Guowei, S. et al. comprehensive optimization of composite cryoprotectant for Saccharomyces boulardii all over freeze-drying and assessment of its storage stability. Prep. Biochem. Biotechnol. 49, 846–857 (2019).
Fakhari, A. & Anand Subramony, J. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. J. handle. release 220, 465–475 (2015).
Tan, X., Feldman, S. R., Chang, J. & Balkrishnan, R. Topical drug start techniques in dermatology: a evaluation of affected person adherence issues. knowledgeable Opin. Drug Deliv. 9, 1263–1271 (2012).
Comments
Post a Comment
Tell Us About Post :)